Schlagwort-Archive: llm

Wie KI-Crawler das SEO-Spiel verändern – und was das für Content-Strategien bedeutet

Wir wollten es genau wissen. Ob sich generative KI-Modelle überhaupt gezielt beeinflussen lassen – durch Inhalte, die man online verfügbar macht. Ob es also eine Art neues SEO gibt, das nicht mehr auf Rankings in Suchmaschinen zielt, sondern darauf, Teil des aktiven „Wissens“ eines Sprachmodells zu werden. Die ernüchternde wie interessante Antwort vorweg: Es ist möglich, aber mit erheblichem Aufwand verbunden. Und es könnte sich lohnen.

Problem: Wenn Wissen im Modell statt auf der Website steckt

Die klassische Suchmaschinenoptimierung richtet sich an Systeme wie Google oder Bing, die Inhalte indexieren und ranken. Doch mit dem Aufstieg generativer Modelle wie GPT-4, Gemini oder Claude verschiebt sich die Dynamik: Nutzer\:innen stellen Fragen direkt an das Modell, oft ohne zu wissen, woher die Antwort stammt. Sichtbarkeit entsteht nicht mehr nur durch Platz 1 im Suchergebnis, sondern durch Aufnahme in die Trainingsdaten oder Retrieval-Systeme. Für Contentproduzierende stellt sich damit eine neue Frage: Wie wird man Teil dieser Antwortmaschine?

Kontext & Analyse: Wie KI-Modelle zu ihrem Wissen kommen

Große Sprachmodelle werden auf Milliarden von Webseiten, Dokumenten und Codequellen trainiert. Für die Pretraining-Phase werden Crawler eingesetzt, die öffentlich zugängliche Inhalte indexieren. Diese Inhalte müssen nicht gut gerankt sein, aber sie müssen auffindbar, verlinkt und maschinenlesbar sein. Einige Modelle nutzen ergänzend Retrieval-Augmented Generation (RAG): Dabei wird zum Zeitpunkt der Anfrage aktiv auf externe Datenquellen zugegriffen.

Wir haben in unserem Projekt testweise mehrere Domains mit hochwertigen Fachinhalten ausgestattet, strukturierte Metadaten genutzt, die Inhalte gezielt verlinkt und synthetischen Traffic erzeugt. Ziel war es, herauszufinden, ob die Inhalte in RAG-gestützten Systemantworten oder sogar direkt im Modell auftauchen.

Ergebnisse: Machbar, aber nur mit Masse

Einzelne Artikel, selbst wenn gut geschrieben, gut verlinkt und technisch optimiert, wurden nur in Ausnahmefällen erkennbar eingebunden. Erst eine verteilte, systematisch orchestrierte Kampagne – mit Dutzenden Domains, hunderten Beiträgen, koordiniertem Crosslinking und kontinuierlichem Traffic – führte zu messbaren Effekten. In Promptantworten von GPT-4 tauchten Elemente unserer Inhalte auf, teilweise paraphrasiert, manchmal wortwörtlich. Dabei wurde klar: Die Modelle „wissen“ nicht – sie haben Textmuster gespeichert. Wer diese Muster oft genug und konsistent in öffentliche Räume einspeist, kann Sichtbarkeit im Modell erzeugen.

Einsichten: Was folgt für Content-Strategien?

  • Klassisches SEO bleibt relevant, aber sollte ergänzt werden durch „AI Visibility Optimization“.
  • Inhalte müssen nicht nur für Menschen lesbar sein, sondern für Crawler logisch strukturiert und verlinkt.
  • Verteilte Strategien (z. B. mit Mikroseiten, Partnernetzwerken, Reposting mit Attribution) könnten in Zukunft gezielter eingesetzt werden, um KI-Wissen zu prägen.
  • Authentischer, substanzreicher Content hat weiter Chancen: Sprachmodelle sind weniger empfindlich für manipulative Strategien als klassische Suchmaschinenalgorithmen.

Ausblick: Ein zweiter Blick auf den Wert von Inhalten

Wenn große Modelle zu Gatekeepern für Alltagswissen werden, entscheidet ihre Trainingsbasis mit über die Sichtbarkeit von Argumenten, Fachpositionen und Deutungsmustern. Das öffnet Raum für neue Strategien – aber auch für Hoffnung: Dass gute Inhalte, echte Expertise, klug strukturierter Text wieder an Bedeutung gewinnen. Nicht, weil sie perfekt optimiert sind, sondern weil sie in einem Meer von Redundanz auffallen.